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Abstract

Although there has been substantial progress in the ab initiu treatment of
low ener y electron scattering from small diatomic and polyatomic molecules in

!the last ew years a number of problems still remain, Most current research has
focused on the calculation of fixed nuclei ecatterin

%
amplitudes in the

static+xchange (SE) approximation. A few calculations ave gone beyond this
a roximation to include electron correlation and/or vibrational and rotational
J? ects, the latter often within the framework of model or parametrized
potentials.

In this article we review a number of developments which have occurred
since the lmt electron molecule satellite meeting at Dareabury Laboratory in
July 1987. Our primary objective shall be to point out the strengths and
weaknesses of current computational capabilities and to describe a new
approach to electron polyatomic collisions using the complex Kohn method.



I. BRIEF HISTORY

The first d initio calculations of electron molecule collisions were

performed by Masseyl and his collaborators in the 1950’s using simple
variational techniques. However, it is fair to say that it was only with the
advent of high speed digital computers in the late 1960’s and early 1970’s that it
became possible to integrate the close+oupling equations resulting from an

expansion of the scatterin wavefunction in Legendre polynmnials2. This single
center approach dominat 3 the field for a number of years but it was clear that
the difficulties of including the multi+enter charge distribution, exchan e and

scorrelation within the existing formalism was formidable. In the ensuing ecade
a number of new techniques were developed which made substantial use of basis

function expansions of the scattering wavefunction. The R-matrix3 and

T-matrix methods4 were two of the earliest, general approaches which achieved
success and were followed in rapid succession by hybrid techniques such as the

Schwinger variational and linear rdgebrac methods6. In these latter two
theories there are components of numerical integration, analytic basis functions
and physical grids. It is very curicus in retrospect that the Kohn variational

met hod7, which wti used cpite successfully by Nesbet8 in electron atom
collisions, was never considered oenously in the molecular problem. Perhaps

this was due to the rezence of anomalous singularities in the K-matricesa
$which make the form “sm diffictdt to apply in large scale calculations. In any

event, by the early 1980’s it waa possible to perform otatic+xchangc

calculations on simple diatomic and linear polyatomic molecules and a few
calculations existed which included electron correlation using optical potentials

or pseudostat~ 10

In addition to these ub initio calculations there were numerous model

exchange and polarization potential 11 calculations which were successful in
reproducing a number of the features of ab initio theories with less effort, A few
of these calculations went beyond the fixed nuclei approximation to include

vibrational effects 12. In most cases this was accomplished using a vibrational
close coupling formalism, often with a local model potential, but a few
calculations attempted to incorporate the true nuclear dynamics within a.A
Born-Oppenheimer frameworklJ. Early suggestions along these lines were

made by Bardsley, Herzenberg and Mand114 using the Kapur-Peierls theory 15

and the Boomerang model 13a,b so successful in explaining the vibrational
resonances in N2, evolved from th~ formalism. In these latter approaches there

is explicitly or iinplicitl recognized an internal re~ion of configuration space
fwhere the nuclear and e ectronic motion can be ad]abaticall y ~eparatcd. The

internal wavefunction is eomehow matched or connected to the outside world
using a frame transformation. A variant of thh approach, within thr R-matrix

formalism, was developed by Schneider, Burke and LeDourncuf ‘3C and appliwl



13dvery successfully to regonant electron N collisions . It has also been used in
2

one form or another to treat the problem of threshold vibrational effects
13e,f

and may be valid for most vibrational excitation problems except very close to
thmhold.

In closing this historical section it is perhaps worth repeating that even
today it M far from routine to perform a fixed nuclei scattering calculation on a
first row diatornic molecule including correlation and/or many inelmtic
channels. Calculations such as these do exist but they are often expensive and
uncertain in terms of convergence. In contr~t, the calculation of highly
accurate bound state wavefunctions for the low lying states of diatornic
molecules is reasonably routine. This is a curious dichotomy considering the
similarities of the two problems when the incident electron is within the
molmul~ ch~ge cloud. The molecular continuum wavefunction does not fall
off exponentially at lar e distances as does the bound state wavefunction and is

3inherently more difflc t to describe. An optimal approach would blend the
power of the multi+enter basis ae!s to describe the short range interactions
with asymptotic functions to treat the long range multipole forces and to carry
the scattering information to the outside world. A number of the theories
mentioned eulier have this property but practical difficulties, which have only
recently been overcome, have preventwl applications to polyatomic systems.
We explore these questions in more detail in the following sections.

H. Theory And Computation: The Problems

There currently exist a number of formal theories capabie of treating the

4+’9a. All of these thwries must dealelectron polyatomic scatterin problem
3with a number of fundament questions. The need to account for correlation of

the target electrons, correlation of the incident and bound electrons, nuclear
motion, large or infinite numbers of open channels, ionization etc are
independent of the formulation of the scattering problem. However, the manner
in which we incorporate these into the calculation is highly dependent on the
formalism. For example, the straightforward treatment of exchange requires
the calculation of frefi~ and bound-free type inte. rals in a number of the
theories mentioned above. fPractical evaluation o these integrals for a
polyatomic molecule is a highly non-trivial task. However the short range

nature of exchan e suggests that an L2 ex aneion in terms of conventional basis
f rsets should be a equate for computation purposes, Just how to integrate this

into the particular formalism being used is the critical issue.
The ma@r difficulties which must be addressed in developing an d initio

treatment of electron polyatomic collisions have some common and some
distinct elements from the electron diatomic problem, As with the diatornics it
is necewary to treat the electron correlations of both the target electrons and
the correlation of the incident and target electrons. Here It is essential to
develop a formalism capable of treating these effects in a balanced fashion. In
almost all of the calculations performed on diatomic systems the targets have
been treated at the single particle level and the incident-target correlation at

the POLCI leve116, Thus in a confi uration interaction Ian uagc the
f fcalculations have allowed single excitations rom the SE refcrcncc con Igurations



of the elastic channel. This accounts quite well for the distortion of the ground
state target orbitals from their unperturbed values and for long range
polarization effects. If the ground and excited states need to be correlated
and/or a more sophisticated treatment of incident–target correlation effects are
required the situation is much less clear. Calculations wi~ich have attempted to
go beyond the POLCI level have had difficulty in balancing N and (N+ 1)

electron correlation effectslO, Some authors17 have used man -body
Jperturbation theory and Greens’ function methods to alleviate these di culties

but a fully integrated treatment remains a topic for future investigation. For
polyatomic molecules there are additional complications which arise from the
lower symmetry and additional vibrational degrees of tleedom of the target.
Thus even at the SE level it is necessary to calculate matrix elements which
cannot easily be reduced to one or two dimensional quadrature, When this is
combined with the difficulties of exchange and correlation the result is a
formidable computational problem requiring considerable ingenuity for its
solution.

In order to address these problems it is imperative to develop a formalism
which is capable of drawin$ on the ~tensive experience of mmputational
quantum chemistry and adding the necessary features to make the scattering
problem tractable. Two approaches have appeared in the literature which have
made progress in dealing with these questions and both are based on

18well-known variational rinciples due respectively to Kohn7 and Schwinger .
fThe Kohn method as recently km reformulated with complex boundary

conditionslg-20 which avoids the anomalous singularities associated with
earlier work using the theory. In addition, the problems associated with
exchanqe and correlation have been cast in a matrix optical potential language
which IS capable of drawing from the experience and computer codes of

quantum chemists 21. Adaptive quadrature schemes22 in three dimensions have
been developed which are capable of avoiding the slowly conver t=nt,

7eingkcenter expansions of earlier approaches to produce accurate values o the
direct and transition potentials needed for the non-exchange fredree and
bound-free integrals.

The Sshwinger5 approach has used a similar philosophy of introd’iting a
basis set and reducing the scattering problem to the calculation of integrals and
the solution of linear algebraic equations, The Schwinger variational principle
has the advantage that it is b~ed on an inte ral equation formulation of the

fscattering problem which does not require osci latory basis functions as part of
the variational space, The price one pa s for this is the n~d to compute some
difficult integrals involvin the potenti

$
J and the free particle Greens’ function,

These inte rah are calcula ie but considerably more expensive to perform than
%those of t e Kohn method which are of the Hamiltonian variety common to

man bound state computations,
b efore closing this section it is worth while remarking that the R-matrix

method is also capable of ban extended to the polyatormc scattering problcm
fin much the same fashion as t e Kohn method, These two formulations have

many common features and it is po80ible to utilize the ideas of separable
exchange and optical potentials within an R-matrix approach. The calculation
of the additional types of matrix elements involving the mode! potential,



R-matrix functions could easily be done using the adaptive quadrature

developed for the Kohn method. If Gauasian basis sets are used for the Lz part
of the expansion, it is possible to perform the direct integrations analytically.
Explorations along th~ lines are currently in progress mth Dr Cliff Noble of
Daresbury Laboratory in the UK.

111,THE COMPLEX KOHN METHOD FOR POLYATOMIC
MOLECULES: FIXED NUCLEI THEORY

There have been a number of developments in the Kohn variational method
over the p~t two years which have made it a practical computational scheme

for the calculation of electron ~lyatomic molecule cross sections2P22. In this
section we review these developments for the fixed nuclei scattering mblem.

rAs stated earlier the major obstacle in the application o the Kohn
variational method to electron molecule collisions was the existence of the so
called anomalous singularititi which made large scale applications of the
method difficult computational.ly. Theze singularities in the K matrix make it
tedious to extract the scattering information since it is impossible to predict in
advamce where they will occur energetically or their number. In fact ths moren
sophisticated the calculation becomes in terms of the number of L4 ‘,erms
included in the expansion of the wavefu.nction the more the singularities plague
the calculation. The cure for this diseaze WM shown by Miller and Janaen OD

der Haar19 20 -
.

and McCurdy, Rescigno and Schneider to M a reformulation of
the Koh.n variational principle with complex boundary conditions. This was inR.
fact su~gested more than a decade earlier by Mito and KarnimurazJ in nuclear
scattering problems. Thus instead of working with the K matrix we focus on
the T or S matrix. The T matrix form may be directly related to the
Kapur-Peierls formulation of R matrix theory which is known to be anomaly
free.

Once the basic formalism is in place it is necessary to find practical
tahniques for the computation of the matrix elements needr ~ in the theory. In
addition to the usual bound-bound type matrix element a Kohn calculation
requires the calculation of bound-free and free-free type integrals. These
integrals consist of kinetic energy, nuclear attraction, electrostatic ud exchange
type terms. The first thr- of these ma be reduced to three dimensional

iquadrature. This is a formidable but tractn le problem to wluch we return in a
moment. The mo~t difficult integrals involve the exchan e of the incident and
target electrons. JThese integrals cannot be computed an ytical.iy or reduced to
low order quadrature by any approach known to these authors. Rescigno andR.
Schneiderzl demonstrated that it was possible to rigorously eliminate these
terms from the Ham.iltotian by using a separable expansion of the exchange
kernel, The essence of the idea is quite simple; since exchange is a ehort range*
interaction it is alwa II possible to expand the exchan e kernel in a set of Lz

i! ‘ifunctions If we ort ogonal.ize the free functions to t e complete eet of one
article bound orbitals the vanishing of the overlap integral .rmures u~ that the

L und-free and fr~free exchange matrix elements will vatich, Since it alwa s
{permissible to u~e nuch a set in the calcultition as a consequence of t c



invariance of the scattering wavefuncticm to the process of orthogonalization our
reformulation is both rigorous and extremely useful In fact it is ftir to state
that without the use of the separable exprmsion and the invariance property of
the wavefunction the calculation of polyatomic collision cross sections would be
at least m order of magnitude more costly in computer time. These ideas may
be extended to the correlation terms in the Hamiltonia if one is prepared to

accept an L* expansion of both direct and exchange type integrals coupling the
fr~ and bound spaces. It is more difficult to justify such an expansion due to
the presence of direct terms in the required matrix elements. However
experience has shown that it is indeed possible and practical to do such an
expansion, The fact that these inte rals involve thm bound state orbitals

!suggests that such an expansion WOU1 be practical. The use of the separable
expansion for the correlation terms reduces our computational effort
considerably. These terms may be then be incorporated into the theory via a

Feshbach optical potentia136 which may be computed using standard bound
state electronic structure theory The merits of this formulation are that it is
possible to utilize large scale configuration interaction programs to calculate the
solution to the linear equations,

(E- QHQ)QXP = QHP (1)

where P(Q) pro@ts onto the open(closed) parts of function space. These linear
equations may be solved by approaches which do not require the Hamiltonian
matrix to be in central memor of the computer. In fact all that is required of

ithese techniques is the multip ‘cation of the Hamiltonian on a vector. These
vectors are then orthonormalized and used to expand the solution of eq( 1). The
coefficients in the expansion are chosen by pro~tion m least squares methods.
In all cases of interest the sequence of vectors so generated converges to an
accurate representation of the desired solution in far less than the size of the
original matrix. Since the approach requires no modification of the original
matrix it may be re~d from a peripheral device or generated “on the fly” if that

can be done efficiently. This latter approach is known as direct C124 in the
quantum chemical literature and is the technique of choice for expansions

involving matrices of the order 104 or larger, Once the linear equations have
been solved it is a simple matter to compute the optical potential as,

v
opt = PHQQXP (2)

The reduced set of equations which “live” in P space are generally of much
smaller dimension since they ned only desc~ibe the open channels and may be
solved by standard gaussian elimination using packaged routines such as thosem-
available in LINPACKzo. Havin

7
eliminated the major computational

roadblock let us return to the calcu ation of the direct matrix elements by
numerical quadrature. The matrix elements involvin the kinetic energy
operator are no more difficult than the fre&ree an c? bound-free overlap
inte@s since it is possible to analytical] differentiate the free and bound one
particle functions. iThe interaction of t e incident electron with the bound
electrons of the molecule requires the evaluation of the potential on the



quadrature grid and the integration of the resultant potential between two
orbitals. This process may be carried out in two steps. To compute the direct
and transition

r
tentials on the quadrature grid requires the calculation of

integrals of the orm,

(3)

where p is a density or transition density matrix. For polyatomic molecules p
may be expressed as a bilinear combination of gaussian type atomic orbitals and
the integral performed analytically. The analytic evaluation requires computing

a number of special functions nz times where n is the number of primitive
atomic orbittds. This is a non-trivial part of the calculation but fortunately it
is energy independent, vectorizable and need only be done once, Given the
potentials it is a relaiivt?ly simple matter to perform the additional three
dimensional numerical qu~drature over the free or bound orbitals to obtain the
final matrix elements. A key feature in making this process efficient is the
generation of an integration grid accurate enough to represent the coulomb
singularities at the atomic nuclei. This is particularly important when there are
a number of atomic nuclei distributed arbitrarily in physical space. The

approach we have used to date 22 is based on transforming a grid which is
!separable in (r, fl,#) into a grid wh.ick produces a new set o points which are

dense and approximately spherically symmetric around each nucleus. The
trmsformation is defined by the equation,

Wi)=d -~ (T’ -- Itnuc) Snuc (1) (4)

where Snuc(~) is a strength function chosen to be a weighted gaussian which

dxaws the points toward the nucleus. We are currently exploring other-.
schemes ‘u which integrate in local co-ordinate systems around each atom and
in a center of mass system between the atoms, This latter approach has the
advantage of exact spherical symmetry around the atomic sites and reduces to
the proper co-ordinates at long distances. It is essential in using such a system
to recognize the possibility of discontinuities across the surfaces separating the
regions. The main advantage of the use of such grid generation schemes is that
it should be possible to obtain accurate results with substantially few~r
integration points.

Once the matrix elements have been calculated they are substituted into
the KohD variationa! expression for the T matrix.

[T]=T trial_2<@al/H_El@~> (5)

The variation of eq(5) produces a set of linear equations which are solved for.
the unknown coefficients of the Lz functions and the trial T matrix. The
stationary value of the T matrix is found by substituting the trial T matrix and
wavefunction back into eq(5), Since the details are a rather standard exercise



we omit them here for lack of space. One final remark before closin this
isectio~ is that the stationary expression for the T matrix is often much etter

than the values obtained from the solution of the linear equations. In fact it is
often the case that small basis sets give very reasonable values for the scattering
parameters in the variationally corrected results and quite poor results in the
uncorrected form. This is another example of the power of a variational
expression with a unsophisticated ,rial function.

IV. BEYOND THE FIXED NUCLEI APPROXIMATION

The calculation of vibrational and rotational excitation cross sections
requires some work beyond the fixed nuclei approximation. In most instances it
is sufficient to use the differences in time scales of the electronic and nuclear
motion to simply average the fixed nuclei results over the ro-’’ibrational
wavefunction. This approximation (adiabatic nuclei approximation), first

sug ested by Chase
f

27 is valid as Ioug as the incident electron moves in and out
of t e interaction regihn rapidly compared to a m-vibrational period. Thus the
adiabatic nuclei approximation will be valid away from thresholds and in the
absence of resonant collisions. Near thresholds the electron is moving very
slowly and it is questimable if one can employ such a separation. In resonant
collisions the electron spends a large fraction of its time near the target
electrons and it is necessary to account for this in the description of the collision
process. It is important to note however that even if the incident eleciron is
near the other electrons and nuclei this does not necessarily signal a complete
breakdown of the Born-Oppenheimer approximation. It may just have to enter
the calculation in a more subtle fashion.

Basically there are two approaches to the inclusion of nuclear motion which
go beyond the fixed nuclei approximation. The first of these, the vibrational

close couplin
f

expansion 12, treats the f~lll collision problem without any
recognition o a separation of nuclear and electronic motions in any part of
configuration space. The result of the expansion is a set of coupled equations
for the channel wavefunctions which may be solved using techniques develcped
for the fixed nuclei case. The ma~r disadvantage of this approach is the size of
the set of coupled equations which now depend on the vibrational as well as the
electronic quantum numbers. The second class of theories make use of the

Born-Oppenheimer separation 13 to somehow simplify the equations. The
boomerang model of Herzenberg is an example of such an approach. However
the physical idea is independent of the particular mathematical formulation.
The essential in redient of all of these theories is to introduce either in

!configuration or unction space a set of solutions of the complete, fixed nuclei
Schroedi ~ger equation. Although these wavefunctions are only solutions of the
electronic Schroedingsr equation, the electrons are not required to move in the
field of the undistorted charge distribution of the target. In a resonar,ce the
incident electron remains in the strong interaction re ion long enough for the
other electrons to adjust to its presence. 1The nuclei t en move on a potential
surface which may be quite different from that of the target electrons.
However, this adjustment may be adiabatic if the electrons motion is
sufficiently rapid compaled to the nuclear motion in the molecular core. Often
this is the case and e full non–adiabatic theory is not necessary. What is



necessary is that the collision process be dominated by the short range physics
and a resonant complex be formed. This is quite similar to the case of true
bound states of molecules where the validly of the Born-Oppenheimer
approximation is the rule rather than the exception in most situations. In a
collision problem the electron eventually escapes and it is necessary to join the
short and long range forms of scattering wavefu.nction to get a complete
solution. This can be done by a matching procedure at a physical boundary as
m the R-matrix or eigenchannel methods or by coupling the internal ad
external solutions of the Schroedinger equation with the potential.

The latter approach may be easily formulated within the framework of the
Kohn variational principle by choosing a trial function of the form,

(6)

where @is the electronic ground state of the target, Xv a vibrational state of th’”

target, #q an L2 function of the electronic Haxniltonian and i?q a vibrational

wavefunction associated with the L2 function. We exclude the possibility of
electronic excitation here for notational simplicity only. The scattering
functions fv are expanded as is usual in the Kohn method as a linear

combination of free waves.

(7j

The L2 electronic functions are chosen here as solutions of the full electronic
Hamiltcmian ignoring the nuclear motion; that is as Born43ppenheimer states.
This allows us to bring the full apparatus of quantum chemistry to bear on the
problem. If the first summation were absent the t?n vibrational wavefunctions

would be a set of quantized levels just like those i; a true bound state. The
coupling of the nuclear and electronic motion causes these vibrational levels to
acquire a lifetime and to produce structure in the scattering cross section. The
extent to which this occurs de~ends on the lifetime of the electrou.ic staie
compared to the time of a vibrational period in that state.

The variation of the Kohn expression for the trial function given in eq(6)
results in the following set of coupled equations,

( E - Eq (R) - TR ) Oq(R) + ~ f$v (R) XV(R) TVV
o

= Vqvo (R) ~vo (R)

(8a)

(8b)



where,

Vqv(R)= <@ql VI A(@fj>

Hqv(R)= <~ql E- HIA(@ h:)>

Hvv’= < A(@h:) ~v I E -.11 I A(Oh:,) Xv, >

We may now formally solve eq(8b and substitute the solution into eq(8a).
)This results in a effective equation or the desired 1’ Matrix,

(9)

We note that in this formulation, as in the R-matrix method, the electronic
manifold of zeroth order states are coupled together via the vibrational Grwns’s
function of the Born~ppenheimer states. In general only one or two of these
states will catribute in a resonant excitation and it is possible to simplify the
equations consideratdy. The essential difficulty beyond the fixed nuclei
approximation is the computation of the matrix elements involvin continuum

tfunctions indexed by the label v, . Approximations along the “nes of the
Boomerang model should simplify the calculation enormously.

In the final section we present some recent calculations using the complex
Kohn formulation to electron formaldehyde (C1320) collisions in the fixed

nucleus approximation. To our knowledge these are the first ab inztzo results on
a polyatornic molecule includin~ polarization in the elastic channel and to
electronic excitation. The elastlc scattering calculations show a pronounced
resonance with vibrational st;ucture quite similm to that in N2 , These

calculations are currently being extended to treat vibrational excitation using
the formalism presented above.

V. RESULTS: ELECTRON CH20 SCATTERING

CH20 is a simple, yet non-trivial molecule to test the formal and

computational scheme outlined in earlier sections. Its molecular structure is
highly non~pherical

H

>
—4

H



it contains both ~ and u electrons and has a large permanent dipole moment. If
one consider: the molecular orbital structure of this molecule we would expect a

low Iyiug r (antibonding) orbital having a character quite similar to the 7E

orbital in N2. Thus the low energy scattering process should be dominated by ~

shape resonfice of bl symmetry, the irreducible representation corresponding to

r symmetry in the diatomic. The elastic scattering in the resonant symmetry-.
was computed using an effective opticaJ Potentialza of 624 configurations. The
optical potential was constructed hy generating all single excitations from the
static exchange configurations which preserved the symmetry of the target and
were singlet coupled, This is an excellent approximation for a shape resonant
dominatsd collision in that it accurately reproduces the short range distortion of
the target orbitals in the presence of the scattered electron, As has been
stressed in N2 this is not a polarizability effect but a distortion of the target

orbitals which preserves symmetry. The effect of the optical potential is to
lower the position of the resonance from its S~ value and to place it in excellent
agreement with available experimental data. The physical grid used to
compute the bound-free and fr~free matrix elements was constructed from an
initial separable grid of 60,000 Gauss quadrature points and weights, As we
have stated earher we are in the process of explorin new approaches to the

fgeneration of physical grids which have the potential o reducing this number by
an order of magnitude, Even with the present approach 60,000 points is a large
“overkill” but we wanted to assure ourselves of convergence in this initinl test
problem, The long range dipole was treated using the MEAN method ofm.
Norcross and Padia!zy which allows us to present meaningful cross sections to
compare against experiment,

The results are summarized in Figure 1. In the SE approximation the
resonance appears at an ener

Y
rwarly 2eV above the correct position with a far

broader width than either t e optical potential results or experiment, The
results of the optical potential calculation place the position of the resonance
essentially exactly at the experimental value. Our calculation, here performed
only at the molecules equilibrium position, is somewhat narrower than the
experimentally observed peak in the elastic channel. This is due to the need to
include vibrational dependence in the cd.lision process, Also shown in the figure

is the cross section from the optical potential calculation at an angle of 120”.
The resonance peak is increasingly visible at larger angles where it is not
obscured by the effect of the permanent dipole of the molecule,

Finally, we turn to some very preliminary results on the electronic

excitation of CH20 within a three state close coupling approximation 3? The

calculation included the loweat excited singlet and triplet st~tes ( A2

symmetry) in addition to the grouud electronic state. The orbitnls h all of the
states were computed usin an avera e Belf consistent field ap roach in order to

Jsimplify the scattering c culation, % ihis resu!ts in a poor ascription of the
ground electronic state due to the lack of full double occupancy of the 2b2



orbital. The orthogondity cmstraints on the scattering functions of bl and b2

symmetry are relaxed using a simple optical potential. The exclusion of such
terms in a similar calculation of the excitation cross section in H2 causes the

results to be a factor of two too small. The cross sections were computed for
the incident electron being in any one of the four possible spatial symmetries
allowed by the point group of the molecule. The cross sections behave
qualitatively as one would expect for singlet and triplet excitations. No
experimental data is currently available so it is difficult to asses the accuracy of
the results. Further calculations are underway to check the results and we
expect to improve on the description of the target states and optical potential in
the near future.

V1. CONCLUSION

The calculation of electron polyatomic collision cross sections from first
principles is a challenging and computationally demanding task, We have
described a new approach to the problem using the complex Kohn variational
principle which has a number of important features, foremost of which is the
rigorous elimination of free-free and bound-free exchan e integrals and the
need for single center expansions. fThe original fixed nuc eus theory has bmn
extended to include vibrational motion and some results for electron
Formaldehyde ~cattering including correlation and electronic excitation have
been presented. The future looks quite promising for applications to a wide
variety of molecules and the extension to treat cdhcr processes such as
molecular photoionization are already underway,
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